High-resolution Imaging Based on Coher- Ent Processing for Distributed Multi-band Radar Data

نویسندگان

  • Feiyang He
  • Xiaojian Xu
چکیده

Abstract—A coherent processing method for subband signals of distributed multi-band radar data is proposed and tested. The method uses de-noising cross-correlation (DNCC) algorithm and statistical method to obtain phase incoherent parameters (ICP) between subband signals. After compensating the phase ICP, a coherence function is defined and combined with statistical method to find amplitude ICP. Finally, data fusion method via two-dimensional gapped-data state space approach (2-D GSSA) is applied to subband signals and high-resolution imaging of target is achieved. The advantage of this method lies in that it can be used to process subband signals of different bandwidth and different gaps between them. To validate our work, electromagnetic calculation target and real target measured in microwave chamber are analyzed and used for testing different mutual-coherence and data fusion algorithms. Experimental results demonstrate the superiority of the proposed method over previous approaches in terms of improved imaging quality and performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR

PAMIR (Phased Array Multifunctional Imaging Radar) is an experimental airborne radar system that has been designed and built by the Research Institute for High Frequency Physics and Radar Techniques (FHR) of Forschungsgesellschaft für Angewandte Naturwissenschaften (FGAN). The goal is to meet the growing demands for future reconnaissance systems with respect to flexibility and multi-mode operat...

متن کامل

Low-complexity sparse reconstruction for high-resolution multi-static passive SAR imaging

Bistatic passive synthetic aperture radar (SAR) systems using ground broadcast and wireless network signals suffer from low spatial resolution due to the narrow bandwidths and low carrier frequencies. By exploiting multiple distributed illuminators, multi-static passive radar has the possibility of producing high-resolution SAR images. In this paper, a two-stage image formation approach, which ...

متن کامل

GigaRad – a Multi-Purpose High-Resolution Ground- based Radar System

Recently DLR has developed and constructed a new experimental radar instrument for various applications like radar signature collection, SAR/ISAR imaging, motion detection, tracking, etc., where high performance and high flexibility have been the key drivers for system design. Consequently a multipurpose and multi-channel radar called GigaRad is operated in X band and allows an overall bandwidt...

متن کامل

Efficiency of Target Location Scenarios in the Multi-Transmitter Multi-Receiver Passive Radar

Multi-transmitter multi-receiver passive radar, which locates target in the surveillance area by the reflected signals of the available opportunistic transmitter from the target, is of interest in many applications. In this paper, we investigate different signal processing scenarios in multi-transmitter multi-receiver passive radar. These scenarios include decentralized processing of reference ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013